
HDL Coder™

Getting Started Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Getting Started Guide
© COPYRIGHT 2012–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2012 Online only New for Version 3.0 (Release 2012a)
September 2012 Online only Revised for Version 3.1 (Release 2012b)
March 2013 Online only Revised for Version 3.2 (Release 2013a)
September 2013 Online only Revised for Version 3.3 (Release 2013b)
March 2014 Online only Revised for Version 3.4 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.6 (Release 2015a)
September 2015 Online only Revised for Version 3.7 (Release 2015b)
October 2015 Online only Rereleased for Version 3.6.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.8 (Release 2016a)
September 2016 Online only Revised for Version 3.9 (Release 2016b)

Contents

About HDL Coder
1

HDL Coder Product Description . 1-2
Key Features . 1-2

Supported Third-Party Tools and Hardware 1-3
Third-Party Synthesis Tools and Version Support 1-3
FPGA-in-the-Loop Hardware . 1-3
Simulink Real-Time FPGA I/O Hardware 1-4
FPGA Turnkey Hardware . 1-4

VHDL and Verilog Language Support 1-6

HDL Coder Supported Hardware . 1-7

Getting Started with HDL Coder
2

Tool Setup . 2-2
Synthesis Tool Path Setup . 2-2
HDL Simulator Setup . 2-3
Xilinx System Generator Setup for ModelSim Simulation . . . 2-4
Altera DSP Builder Setup . 2-4
FPGA Simulation Library Setup . 2-5
C/C++ Compiler Setup . 2-5

Prepare Simulink Model For HDL Code Generation 2-6

Verification . 2-7
HDL Test Bench . 2-7
HDL Cosimulation . 2-7

v

FPGA-in-the-Loop . 2-7

Tutorials
3

HDL Code Generation from a MATLAB Algorithm 3-2
About the Algorithm in This Example 3-2
Copying Files Locally . 3-3
Checking Your Synthesis Tool Setup 3-4
Testing the Original MATLAB Algorithm 3-4
Setting Up an HDL Coder Project . 3-5
Creating Fixed-Point Versions of the Algorithm and Test

Bench . 3-8
Generating HDL Code . 3-12

HDL Code Generation from a Simulink Model 3-15
Before You Generate Code . 3-15
Overview of Exercises . 3-15
The sfir_fixed Model . 3-16
Generate Code Using the HDL Workflow Advisor 3-19
Generate HDL Code Using the Command Line 3-22
Generate HDL Code Using the Configuration Parameters

Dialog Box . 3-29
Simulating and Verifying Generated HDL Code 3-39

vi Contents

1

About HDL Coder

• “HDL Coder Product Description” on page 1-2
• “Supported Third-Party Tools and Hardware” on page 1-3
• “VHDL and Verilog Language Support” on page 1-6
• “HDL Coder Supported Hardware” on page 1-7

1 About HDL Coder

HDL Coder Product Description
Generate VHDL and Verilog code for FPGA and ASIC designs

HDL Coder™ generates portable, synthesizable VHDL® and Verilog® code from
MATLAB® functions, Simulink® models, and Stateflow® charts. The generated HDL code
can be used for FPGA programming or ASIC prototyping and design.

HDL Coder provides a workflow advisor that automates the programming of Xilinx® and
Altera® FPGAs. You can control HDL architecture and implementation, highlight critical
paths, and generate hardware resource utilization estimates. HDL Coder provides
traceability between your Simulink model and the generated Verilog and VHDL code,
enabling code verification for high-integrity applications adhering to DO-254 and other
standards.

Key Features

• Target-independent, synthesizable VHDL and Verilog code
• Code generation support for MATLAB functions, System objects and Simulink blocks
• Mealy and Moore finite-state machines and control logic implementations using

Stateflow
• Workflow advisor for programming Xilinx and Altera application boards
• Resource sharing and retiming for area-speed tradeoffs
• Code-to-model and model-to-code traceability for DO-254
• Legacy code integration

1-2

 Supported Third-Party Tools and Hardware

Supported Third-Party Tools and Hardware

In this section...

“Third-Party Synthesis Tools and Version Support” on page 1-3
“FPGA-in-the-Loop Hardware” on page 1-3
“Simulink Real-Time FPGA I/O Hardware” on page 1-4
“FPGA Turnkey Hardware” on page 1-4

Third-Party Synthesis Tools and Version Support

The HDL Workflow Advisor is tested with the following third-party FPGA synthesis
tools:

• Altera Quartus II 15.1
• Xilinx Vivado® Design Suite 2015.4
• Xilinx ISE 14.7
• Xilinx ISE 10.1 is supported only for compatibility with Speedgoat FPGA target

devices.

Speedgoat IO301, IO303, and IO311 FPGA IO boards, which use Xilinx Virtex-
II FPGAs, are tested with Xilinx ISE version 10.1. Before you select one of these
Speedgoat devices in the HDL Workflow Advisor, make sure that you have installed
Xilinx ISE 10.1. See “Generate Simulink Real-Time Interface for Speedgoat Boards”
for more information.

To use third-party synthesis tools with HDL Coder, a supported synthesis tool must be
installed, and the synthesis tool executable must be on the system path. For details, see
“Tool Setup” on page 2-2.

FPGA-in-the-Loop Hardware

The FPGAs supported for FPGA-in-the-loop simulation with HDL Verifier™ are listed in
the HDL Verifier documentation.

You can also add custom FPGA boards using the FPGA Board Manager. See “FPGA
Board Customization” for details.

1-3

1 About HDL Coder

For FPGA-in-the-Loop or Customization for USRP® Device using the HDL Workflow
Advisor, a supported synthesis tool must be installed, and the synthesis tool executable
must be on the system path. For details, see “Tool Setup” on page 2-2.

Simulink Real-Time FPGA I/O Hardware

The FPGA I/O boards supported for use with the Simulink Real-Time™ FPGA IO
workflow are listed in the Simulink Real-Time documentation.

FPGA Turnkey Hardware

The following hardware is supported for the FPGA Turnkey workflow:

• Altera Arria® II GX FPGA development kit
• Altera Cyclone® III FPGA development kit
• Altera Cyclone IV GX FPGA development kit
• Altera DE2–115 development and education board
• XUP Atlys Spartan-6 development board
• Xilinx Spartan-3A DSP 1800A development board
• Xilinx Spartan-6 SP605 development board
• Xilinx Virtex-4 ML401 development board
• Xilinx Virtex-4 ML402 development board
• Xilinx Virtex-5 ML506 development board
• Xilinx Virtex-6 ML605 development board

For FPGA development boards that have more than one FPGA device, only one such
device can be used with FPGA Turnkey.

Supported FPGA Device Families for Board Customization

You can also add custom FPGA boards using the FPGA Board Manager. HDL Coder
supports the following FPGA device families for board customization; that is, when you
create your own board definition file. See “FPGA Board Customization”.

Device Family

Xilinx Kintex7

1-4

 Supported Third-Party Tools and Hardware

Device Family

Spartan-3A DSP
Spartan3
Spartan3A and Spartan3AN
Spartan3E
Spartan6
Virtex4
Virtex5
Virtex6
Virtex7
Cyclone III
Cyclone IV
Arria II

Stratix® IV

Altera

Stratix V

More About
• “Tool Setup” on page 2-2

1-5

1 About HDL Coder

VHDL and Verilog Language Support

The generated HDL code complies with the following standards:

• VHDL-1993 (IEEE® 1076-1993) or later
• Verilog-2001 (IEEE 1364-2001) or later

1-6

 HDL Coder Supported Hardware

HDL Coder Supported Hardware

As of this release, HDL Coder supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release Available

Altera FPGA Boards Altera R2013b Current
Altera SoC Platform Altera R2014b Current
Xilinx FPGA Boards Xilinx R2013b Current
Xilinx Zynq-7000 Platform Xilinx R2013a Current

For a complete list of support packages, see Hardware Support.

In addition to these packages, HDL Coder includes built-in support for:

• FPGA-in-the-loop simulation with HDL Verifier
• Simulink Real-Time FPGA I/O hardware
• Custom FPGA boards using the FPGA Board Manager

For details, see “Supported Third-Party Tools and Hardware” on page 1-3.

1-7

http://www.mathworks.com/hardware-support/index.html?q=%20product:%22HDL+Coder%22

2

Getting Started with HDL Coder

• “Tool Setup” on page 2-2
• “Prepare Simulink Model For HDL Code Generation” on page 2-6
• “Verification” on page 2-7

2 Getting Started with HDL Coder

Tool Setup

In this section...

“Synthesis Tool Path Setup” on page 2-2
“HDL Simulator Setup” on page 2-3
“Xilinx System Generator Setup for ModelSim Simulation” on page 2-4
“Altera DSP Builder Setup” on page 2-4
“FPGA Simulation Library Setup” on page 2-5
“C/C++ Compiler Setup” on page 2-5

Synthesis Tool Path Setup

• “hdlsetuptoolpath Function” on page 2-2
• “Add Synthesis Tool for Current HDL Workflow Advisor Session” on page 2-2
• “Check Your Synthesis Tool Setup” on page 2-3
• “Supported Tool Versions” on page 2-3

hdlsetuptoolpath Function

To use HDL Coder with one of the supported third-party FPGA synthesis tools, add the
tool to your system path using the hdlsetuptoolpath function. Add the tool to your
system path before opening the HDL Workflow Advisor. If you already have the HDL
Workflow Advisor open, see “Add Synthesis Tool for Current HDL Workflow Advisor
Session” on page 2-2.

Add Synthesis Tool for Current HDL Workflow Advisor Session

Simulink to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the
synthesis tool.

2 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool step, to the right of Synthesis tool, click Refresh.

The synthesis tool is now available.

MATLAB to HDL Workflow

2-2

 Tool Setup

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the
synthesis tool.

2 In the HDL Workflow Advisor, in the Select Code Generation Target step, to the
right of Synthesis tool, click Refresh list.

The synthesis tool is now available.

Check Your Synthesis Tool Setup

To check your Altera Quartus synthesis tool setup in MATLAB, try launching the tool
with the following command:

!quartus

To check your Xilinx Vivado synthesis tool setup in MATLAB, try launching the tool with
the following command:

!vivado

To check your Xilinx ISE synthesis tool setup in MATLAB, try launching the tool with
the following command:

!ise

Supported Tool Versions

For supported tool versions, see “Third-Party Synthesis Tools and Version Support” on
page 1-3.

HDL Simulator Setup

To set up ModelSim®, Questa®, or Incisive® for HDL simulation, or for cosimulation with
HDL Verifier, see “HDL Simulator Startup”.

Add Simulation Tool for Current HDL Workflow Advisor Session

MATLAB to HDL Workflow

1 Set up your simulation tool.
2 In the HDL Workflow Advisor, in the HDL Verification > Verify with HDL Test

Bench task, click Refresh list.

2-3

2 Getting Started with HDL Coder

The simulation tool is now available.

Xilinx System Generator Setup for ModelSim Simulation

To generate ModelSim simulation scripts for a design containing Xilinx System
Generator blocks, you must:

• Have compiled Xilinx simulation libraries.
• Specify the path to your compiled libraries.

Required Libraries for Vivado and ISE

To generate ModelSim simulation scripts, you must have the following compiled Xilinx
simulation libraries for your EDA simulator and target language:

• unisim

• simprim

• xilinxcorelib

To learn how to compile these libraries, refer to the Xilinx documentation.

• For Vivado, see compile_simlib.
• For ISE, see compxlib.

Specify Path to Required Libraries

Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your model.

For example, you can use hdlset_param to set XilinxSimulatorLibPath:

libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/

 mti_se/6.6a/lin64/xilinxcorelib';

hdlset_param (bdroot, 'XilinxSimulatorLibPath', libpath);

Altera DSP Builder Setup

To generate code for a design containing both Altera DSP Builder and Simulink blocks,
you must open MATLAB with Altera DSP Builder. For details, refer to the Altera DSP
Builder documentation.

2-4

 Tool Setup

FPGA Simulation Library Setup

To map your design to an Altera or a Xilinx FPGA simulator library:

• Use Xilinx LogiCORE® IP Floating-Point Operator v5.0 or Altera floating-point
megafunction IP cores.

• Specify the compiled simulation library and the target language for your EDA
simulator. Use XilinxCoreLib simulation library for Xilinx LogiCORE IP and the
EDA simulation library compiler for Altera megafunction IP.

To learn how to compile this library, refer to the Xilinx compxlib documentation .
• Specify the path to your compiled Altera or Xilinx simulation libraries. Altera

provides the simulation model files in \quartus\eda\sim_lib folder. Set the
SimulationLibPath parameter for your DUT.

For example, you can use hdlset_param to set SimulationLibPath:

myDUT = gcb;

libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/

 mti_se/6.6a/lin64/xilinxcorelib';

hdlset_param (myDUT, 'SimulationLibPath', libpath);

You can also specify the simulation library path from the HDL Code Generation >
Test Bench pane in the Configuration Parameters dialog box.

C/C++ Compiler Setup

HDL Coder locates and uses a supported installed compiler. For most platforms, a
default compiler is supplied with MATLAB. For a list of supported compilers, see at
http://www.mathworks.com/support/compilers/current_release/.

More About
• “Third-Party Synthesis Tools and Version Support” on page 1-3

2-5

http://www.mathworks.com/support/compilers/current_release/

2 Getting Started with HDL Coder

Prepare Simulink Model For HDL Code Generation

To prepare your Simulink model for code generation:

• To check your model for compatibility with HDL code generation, use the checkhdl
function.

When you create the model, you can save time by using a filtered view in the Library
Browser that shows only blocks that are compatible with HDL code generation. To
show this filtered view, use the hdllib command.

Code generation does not support all available combinations of supported blocks,
block implementations, block properties, and HDL optimizations. The checkhdl
function can find many code generation incompatibilities. However, you can modify
your model later to generate code that meets your hardware requirements.

• If you want to synthesize your generated HDL code, convert your model to fixed point.

To learn how to use Fixed-Point Designer™ to convert your floating-point model to a
fixed-point model, see “Convert Floating-Point Model to Fixed Point”.

If your synthesis tool and hardware support floating-point constructs, you can
synthesize some of those constructs. To learn more, see “FPGA Floating-Point
Libraries”.

• To configure the solver for HDL code generation, run hdlsetup .

See Also

Functions
checkhdl | hdllib | hdlsetup

Related Examples
• “View HDL-Specific Block Documentation”

More About
• “Supported Blocks”

2-6

 Verification

Verification

In this section...

“HDL Test Bench” on page 2-7
“HDL Cosimulation” on page 2-7
“FPGA-in-the-Loop” on page 2-7

HDL Test Bench

HDL Cosimulation

FPGA-in-the-Loop

2-7

3

Tutorials

• “HDL Code Generation from a MATLAB Algorithm” on page 3-2
• “HDL Code Generation from a Simulink Model” on page 3-15

3 Tutorials

HDL Code Generation from a MATLAB Algorithm

In this section...

“About the Algorithm in This Example” on page 3-2
“Copying Files Locally” on page 3-3
“Checking Your Synthesis Tool Setup” on page 3-4
“Testing the Original MATLAB Algorithm” on page 3-4
“Setting Up an HDL Coder Project” on page 3-5
“Creating Fixed-Point Versions of the Algorithm and Test Bench” on page 3-8
“Generating HDL Code” on page 3-12

About the Algorithm in This Example

For the purpose of this example, you generate and synthesize HDL code for a MATLAB
algorithm that implements a simple filter. However, you can use HDL Coder to generate
HDL code from MATLAB algorithms for many applications.

This tutorial uses these files:

• mlhdlc_sfir.m — Simple filter function from which you generate HDL code.
• mlhdlc_sfir_tb.m — Test bench that the HDL Coder project uses to exercise the

filter using a representative input range.

mlhdlc_sfir Function Code

The following code provides the complete mlhdlc_sfir function definition.

%#codegen

function [y_out, delayed_xout] = mlhdlc_sfir(x_in, h_in1, h_in2, h_in3, h_in4)

% Symmetric FIR Filter

persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8;

if isempty(ud1)

 ud1 = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; ud6 = 0; ud7 = 0; ud8 = 0;

end

a1 = ud1 + ud8; a2 = ud2 + ud7;

a3 = ud3 + ud6; a4 = ud4 + ud5;

m1 = h_in1 * a1; m2 = h_in2 * a2;

3-2

 HDL Code Generation from a MATLAB Algorithm

m3 = h_in3 * a3; m4 = h_in4 * a4;

a5 = m1 + m2; a6 = m3 + m4;

% filtered output

y_out = a5 + a6;

% delayout input signal

delayed_xout = ud8;

% update the delay line

ud8 = ud7;

ud7 = ud6;

ud6 = ud5;

ud5 = ud4;

ud4 = ud3;

ud3 = ud2;

ud2 = ud1;

ud1 = x_in;

end

mlhdlc_sfir_tb.m Test Bench

The mlhdlc_sfir_tb test bench creates an input signal and calls the mlhdlc_sfir
filter, passing in the input data.
clear all;

% input signal with noise

x_in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

% filter coefficients

h1 = -0.1339; h2 = -0.0838; h3 = 0.2026; h4 = 0.4064;

len = length(x_in);

y_out = zeros(1,len);

x_out = zeros(1,len);

for ii=1:len

 data = x_in(ii);

 % call to the design 'mlhdlc_sfir' that is targeted for hardware

 [y_out(ii), x_out(ii)] = mlhdlc_sfir(data, h1, h2, h3, h4);

end

figure('Name', [mfilename, '_plot']);

subplot(2,1,1); plot(1:len,x_in);

subplot(2,1,2); plot(1:len,y_out);

Copying Files Locally

Before you begin generating code, set up a working folder and copy the tutorial files to
this folder.

3-3

3 Tutorials

1 Start MATLAB.
2 Create a folder named filter_sfir, for example:

mkdir filter_sfir

The folder must not be within the MATLAB directory structure. You must be able to
write to this folder.

3 Copy the tutorial files, mlhdlc_sfir.m and mlhdlc_sfir_tb.m, to this folder.

Checking Your Synthesis Tool Setup

Before using HDL Coder to synthesize HDL code, you must set up your synthesis tool
path.

To check your Xilinx ISE synthesis tool setup, try launching the tool with the following
command:

!ise

To check your Altera Quartus synthesis tool setup, try launching the tool with the
following command:

!quartus

If the tool does not open, or opens the wrong version, see “Synthesis Tool Path Setup” on
page 2-2.

Testing the Original MATLAB Algorithm

Before generating HDL code for this MATLAB algorithm, simulate your MATLAB design
to verify that it runs, and to provide a baseline for comparison with the generated HDL
code.

1 Make the filter_sfir folder your working folder, for example:

cd filter_sfir

2 Run the test bench. At the MATLAB command line, enter:

mlhdlc_sfir_tb

The test bench runs and plots the input signal and the filtered output.

3-4

 HDL Code Generation from a MATLAB Algorithm

Setting Up an HDL Coder Project

1 On the Apps tab, on the far right of the Apps section, click the arrow .
2 Under Code Generation, click HDL Coder.
3 Enter mydesign for the project name.

3-5

3 Tutorials

HDL Coder creates the project, mydesign.prj, in the local working folder, and
opens the project in the right side of the MATLAB workspace.

3-6

 HDL Code Generation from a MATLAB Algorithm

3-7

3 Tutorials

4 Under MATLAB Function, click Add MATLAB function.
5 In the Add Files dialog box, select mlhdlc_sfir.m and click Open.

HDL Coder adds the file to the project.
6 Under MATLAB Test Bench, click Add MATLAB test bench.
7 In the Add Files dialog box, select mlhdlc_sfir_tb.m and click Open.

HDL Coder adds the test bench file to the project.

You are now ready to convert the code from floating-point to fixed-point.

Creating Fixed-Point Versions of the Algorithm and Test Bench

1 In the project, at the bottom of the pane, click the Workflow Advisor button to open
the HDL Coder Workflow Advisor.

3-8

 HDL Code Generation from a MATLAB Algorithm

2 Select the Define Input Types task and click Run.

HDL Coder simulates the algorithm and test bench, and automatically defines input
types.

3 On the left, select the Fixed-Point Conversion task. The Fixed-Point Conversion
tool opens in the right pane.

3-9

3 Tutorials

a At the top left, click Run Simulation.

After the simulation, each input, output, and persistent variable has a Sim Min,
Sim Max, and Proposed Type in the table.

When proposing fraction lengths for floating-point data types, HDL Coder uses
the Default word length. In this tutorial, the Default word length is 14. The
advisor provides a default Safety Margin for Simulation Min/Max of 0%. The

3-10

 HDL Code Generation from a MATLAB Algorithm

advisor adjusts the range of the data by this safety factor. For example, a value
of 4 specifies that you want a range of at least 4 percent larger.

In this example, we use only the simulation ranges to infer fixed-point types.
Compute Derived Ranges gives you the option of using static range analysis.
To learn more about options in the fixed-point conversion workflow, see
“Automated Fixed-Point Conversion”.

b At the top, in the Verification section, click Validate Types.

HDL Coder validates the build with the proposed fixed-point types and
generates a fixed-point design.

c At the top, in the Verification section, click the down-arrow for Test Numerics
and select Log inputs and outputs for comparison plots. Click the top part
of the Test Numerics button.

HDL Coder simulates the fixed-point design with the original test bench
compares the output to the original floating-point design output.

d Click the down-arrow to the right of the Verification Output tab and select
Type Validation Output. Click mlhdlc_sfir_fixpt to see the fixed-point
MATLAB code for the mlhdlc_sfir function.

%#codegen

function [y_out,delayed_xout] = mlhdlc_sfir_fixpt(x_in,h_in1,h_in2,h_in3,h_in4)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',

 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',

 'MaxSumWordLength', 128);

% Symmetric FIR Filter

% declare and initialize the delay registers

persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8

if isempty(ud1)

 ud1 = fi(0, 1, 14, 12, fm);

 ud2 = fi(0, 1, 14, 12, fm);

 ud3 = fi(0, 1, 14, 12, fm);

 ud4 = fi(0, 1, 14, 12, fm);

 ud5 = fi(0, 1, 14, 12, fm);

 ud6 = fi(0, 1, 14, 12, fm);

 ud7 = fi(0, 1, 14, 12, fm);

 ud8 = fi(0, 1, 14, 12, fm);

end

% access the previous value of states/registers

a1 = fi(ud1 + ud8, 1, 14, 11, fm);

a2 = fi(ud2 + ud7, 1, 14, 11, fm);

a3 = fi(ud3 + ud6, 1, 14, 11, fm);

a4 = fi(ud4 + ud5, 1, 14, 11, fm);

% multiplier chain

m1 = fi(h_in1*a1, 1, 14, 14, fm);

3-11

3 Tutorials

m2 = fi(h_in2*a2, 1, 14, 15, fm);

m3 = fi(h_in3*a3, 1, 14, 14, fm);

m4 = fi(h_in4*a4, 1, 14, 13, fm);

% adder chain

a5 = fi(m1 + m2, 1, 14, 14, fm);

a6 = fi(m3 + m4, 1, 14, 12, fm);

% filtered output

y_out = fi(a5 + a6, 1, 14, 12, fm);

% delayout input signal

delayed_xout = fi(ud8, 1, 14, 12, fm);

% update the delay line

ud8 = fi(ud7, 1, 14, 12, fm);

ud7 = fi(ud6, 1, 14, 12, fm);

ud6 = fi(ud5, 1, 14, 12, fm);

ud5 = fi(ud4, 1, 14, 12, fm);

ud4 = fi(ud3, 1, 14, 12, fm);

ud3 = fi(ud2, 1, 14, 12, fm);

ud2 = fi(ud1, 1, 14, 12, fm);

ud1 = fi(x_in, 1, 14, 12, fm);

end

e Click the View report link.

You can explore the fixed-point code further in the Code Generation Report.

Generating HDL Code

1 In the HDL Workflow Advisor left pane, select HDL Code Generation and click
Run to generate HDL code with the default options.

The message window has a links to the generated HDL code and the resource report.
Click the links to view the code and resource report.

Tip You can use the Target, Coding Style, Clocks and Ports, Optimizations,
Advanced, and Script Options tabs to set code generation options. To learn about
the options, click the ? button.

2 In the HDL Workflow Advisor left pane, select HDL Verification > Verify with
HDL Test Bench.

3 Enable Generate HDL test bench and disable Skip this step. Enable Simulate
generated HDL test bench and select a simulation tool. Click Run.

The task generates an HDL test bench, then simulates the fixed-point design using
the selected simulation tool, and generates a compilation report and a simulation
report.

3-12

 HDL Code Generation from a MATLAB Algorithm

4 Click Synthesis and Analysis and disable Skip this step.

a Select Create Project.
b On the right, select a Synthesis tool from the list and click Run.

This task creates a synthesis project for the HDL code. HDL Coder uses this
project in the next task to synthesize the design.

5 Select and run Run Logic Synthesis.

3-13

3 Tutorials

This task:

• Launches the synthesis tool in the background.
• Opens the synthesis project created in the previous task, compiles HDL code,

synthesizes the design, and emits netlists and related files.
• Generates a synthesis report.

6 Select and run Place and Route.

This task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced

by the previous mapping process, and emits a circuit description suitable for
programming an FPGA.

• Emits pre- and post-routing timing information for use in critical path analysis
and back annotation of your source model.

• Displays results.

3-14

 HDL Code Generation from a Simulink Model

HDL Code Generation from a Simulink Model

In this section...

“Before You Generate Code” on page 3-15
“Overview of Exercises” on page 3-15
“The sfir_fixed Model” on page 3-16
“Generate Code Using the HDL Workflow Advisor” on page 3-19
“Generate HDL Code Using the Command Line” on page 3-22
“Generate HDL Code Using the Configuration Parameters Dialog Box” on page 3-29
“Simulating and Verifying Generated HDL Code” on page 3-39

Before You Generate Code

Before you generate HDL code from your own models, you should do the following:

• Before generating code, use the hdlsetup utility (described in “Initializing Model
Parameters with hdlsetup” on page 3-23) to set up your model for HDL code
generation quickly and consistently.

• Use the hdllib utility to create a library of blocks that are currently supported
for HDL code generation, as described in “Show Blocks Supported for HDL Code
Generation”. By constructing models with blocks from this library, your models will be
HDL compatible.

The set of supported blocks will change in future releases, so you should rebuild your
supported blocks library each time you install a new version of this product.

• Use the Run Compatibility Checker option (described in “Selecting and Checking
a Subsystem for HDL Compatibility” on page 3-35) to check HDL compatibility of
your model or DUT and generate an HDL Code Generation Check Report.

Alternatively, you can invoke the checkhdl function (see checkhdl) to run the
compatibility checker.

Overview of Exercises

HDL Coder supports HDL code generation in your choice of environments:

3-15

3 Tutorials

• The MATLAB Command Window supports code generation using the makehdl,
makehdltb, and other functions.

• The Simulink GUI (the Configuration Parameters dialog box and/or Model Explorer)
provides an integrated view of the model simulation parameters and HDL code
generation parameters and functions.

The hands-on exercises in this chapter introduce you to the mechanics of generating and
simulating HDL code, using the same model to generate code in both environments. In a
series of steps, you will

• Configure a simple model for code generation.
• Generate VHDL code from a subsystem of the model.
• Generate a VHDL test bench and scripts for the Mentor Graphics® ModelSim

simulator to drive a simulation of the model.
• Compile and execute the model and test bench code in the simulator.
• Generate and simulate Verilog code from the same model.
• Check a model for compatibility with HDL Coder.

The sfir_fixed Model

These exercises use the sfir_fixed model as a source for HDL code generation. The
model simulates a symmetric finite impulse response (FIR) filter algorithm, implemented
with fixed-point arithmetic.

The blocks in this example model support HDL code generation, and the model
parameters have been configured for HDL code generation. To learn more about
preparing your model for code generation, see “Prepare Simulink Model For HDL Code
Generation” on page 2-6.

The following figure shows the top level of the model.

3-16

 HDL Code Generation from a Simulink Model

This model uses a division of labor that is helpful in HDL design:

• The symmetric_fir subsystem, which implements the filter algorithm, is the
device under test (DUT). An HDL entity will be generated, tested, and eventually
synthesized from this subsystem.

• The top-level model components that drive the subsystem work as a test bench.

The top-level model generates 16-bit fixed-point input signals for the symmetric_fir
subsystem. The Signal From Workspace block generates a test input (stimulus) signal for
the filter. The four Constant blocks provide filter coefficients.

The Scope blocks are used in simulation only. They are virtual blocks, and do not
generate HDL code.

The following figure shows the symmetric_fir subsystem.

3-17

3 Tutorials

The fixed-point data types propagate through the subsystem. Inputs inherit the data
types of the signals presented to them. Where required, internal rules of the blocks
determine the output data type, given the input data types and the operation performed
(for example, the Product blocks).

The filter outputs a fixed-point result at the y_out port, and also replicates its input
(after passing it through several delay stages) at the delayed_x_out port.

In the exercises that follow, you generate VHDL code that implements the
symmetric_fir subsystem as an entity. You then generate a test bench from the top-
level model. The test bench drives the generated entity, for the required number of clock
steps, with stimulus data generated from the Signal From Workspace block.

3-18

 HDL Code Generation from a Simulink Model

Generate Code Using the HDL Workflow Advisor

This example shows how to generate HDL code from a Simulink model using the HDL
Workflow Advisor.

The model you use in this example, sfir_fixed, is already prepared for code
generation.

This example uses the Xilinx ISE synthesis tool, and assumes your synthesis tool path is
set up. You can also follow this example using Altera Quartus II.

Create Working Folder and Copy Model

1 Start MATLAB.
2 Create a folder named sl_hdlcoder_work. For example:

mkdir C:\work\sl_hdlcoder_work

You will use sl_hdlcoder_work to store a local copy of the example model and to
store folders and code generated by HDL Coder. The location of the folder does not
matter, except that it should not be within the MATLAB folder tree.

3 Make the sl_hdlcoder_work folder your working folder. For example:

cd C:\work\sl_hdlcoder_work

4 Open the sfir_fixed model.

sfir_fixed

5 Save a copy of sfir_fixed in your sl_hdlcoder_work folder.

Generate Code Using the HDL Workflow Advisor

1 Right-click the symmetric_fir subsystem and select HDL Code > HDL
Workflow Advisor.

2 In the Set Target > Set Target Device and Synthesis Tool step, for Synthesis
tool, select Xilinx ISE and click Run This Task.

3-19

3 Tutorials

3 Right-click Prepare Model For HDL Code Generation and select Run All. The
HDL Workflow Advisor checks the model for code generation compatibility.

4 In the HDL Code Generation > Set Code Generation Options > Set Basic
Options step, select the following options, then click Apply:

• For Language, select Verilog.
• Enable Generate traceability report.
• Enable Generate resource utilization report.

5 View the options available in the Optimization and Coding style tabs. You can
use these options to modify the implementation and format of the generated code.

6 Right-click the HDL Code Generation > Generate RTL Code and Testbench
step, and select Run to Selected Task.

3-20

 HDL Code Generation from a Simulink Model

The code generation report, which includes the resource utilization and traceability
reports, opens automatically. The resource utilization report shows the hardware
resources your design implementation is using. The traceability report enables you
to navigate between your model and the generated code.

Perform FPGA Synthesis and Analysis

1 In the FPGA Synthesis and Analysis > Perform Synthesis and P/R > Perform
Place and Route task, unselect Skip this task and click Apply.

2 Right-click Annotate Model with Synthesis Result and select Run to Selected
Task.

3 View the annotated critical path in the model.

3-21

3 Tutorials

The critical path is colored cyan.

Generate HDL Code Using the Command Line

• “Overview” on page 3-23
• “Creating a Folder and Local Model File” on page 3-23
• “Initializing Model Parameters with hdlsetup” on page 3-23
• “Generating a VHDL Entity from a Subsystem” on page 3-25
• “Generating VHDL Test Bench Code” on page 3-26
• “Verifying Generated Code” on page 3-28
• “Generating a Verilog Module and Test Bench” on page 3-28

3-22

 HDL Code Generation from a Simulink Model

Overview

This exercise provides a step-by-step introduction to code and test bench generation
commands, their arguments, and the files created by the code generator. The exercise
assumes that you have familiarized yourself with the example model (see “The sfir_fixed
Model” on page 3-16).

Creating a Folder and Local Model File

Make a local copy of the example model and store it in a working folder, as follows.

1 Start the MATLAB software.
2 Create a folder named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

The sl_hdlcoder_work folder will store a local copy of the example model and to
store folders and code generated by HDL Coder. The location of the folder does not
matter, except that it should not be within the MATLAB tree.

3 Make the sl_hdlcoder_work folder your working folder, for example:

cd C:\work\sl_hdlcoder_work

4 To open the example model, type the following command at the MATLAB prompt:

sfir_fixed

5 In Simulink, select File > Save As and save a local copy of the sfir_fixed model
to your working folder.

6 Leave the sfir_fixed model open and proceed to the next section.

Initializing Model Parameters with hdlsetup

Before generating code, you must configure the model. You can use the hdlsetup
command instead of configuring the model manually. The hdlsetup command uses the
set_param function to set up models for HDL code generation quickly and consistently.

To configure the model for HDL code generation:

1 At the MATLAB command prompt, enter:

hdlsetup('sfir_fixed')

2 Select Save from the File menu, to save the model with its new settings.

3-23

3 Tutorials

Before continuing with code generation, consider the settings that hdlsetup applies to
the model.

hdlsetup configures the Solver options that are recommended or required by HDL
Coder. These are

• Type: Fixed-step. (HDL Coder currently supports variable-step solvers under
limited conditions. See hdlsetup)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be
selected, but this option is usually the best one for simulating discrete systems.

• Tasking mode: SingleTasking. HDL Coder does not currently support models that
execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as follows:

• Start Time: 0.0 s
• Stop Time: 10 s
• Fixed step size (fundamental periodic sample time) : auto

If Fixed step size is set to auto the step size is chosen automatically, based on the
sample times specified in the model. In the example model, only the Signal From
Workspace block specifies an explicit sample time (1 s); the other blocks inherit this
sample time.

The model start and stop times determine the total simulation time. This in turn
determines the size of data arrays that are generated to provide stimulus and output
data for generated test benches. For the example model, computation of 10 seconds of
test data does not take a significant amount of time. Computation of sample values for
more complex models can be time consuming. In such cases, you may want to decrease
the total simulation time.

The remaining parameters set by hdlsetup control error severity levels, data logging,
and model display options. If you want to view the complete set of model parameters
affected by hdlsetup, open hdlsetup.m in the MATLAB Editor.

The model parameter settings provided by are intended as useful defaults, but they may
not be optimal for your application. For example, hdlsetup sets a default Simulation
stop time of 10 s. A total simulation time of 1000 s would be more realistic for a test of

3-24

 HDL Code Generation from a Simulink Model

the sfir_fixed example model. If you would like to change the simulation time, enter
the desired value into the Simulation stop time field of the Simulink window.

See the “Model Parameters” table in the “Model and Block Parameters” section of the
Simulink documentation for a summary of model parameters.

Generating a VHDL Entity from a Subsystem

In this section, you will use the makehdl function to generate code for a VHDL entity
from the symmetric_fir subsystem of the example model. makehdl also generates
script files for third-party HDL simulation and synthesis tools.

makehdl lets you specify numerous properties that control various features of the
generated code. In this example, you will use the makehdl property defaults.

Before generating code, make sure that you have completed the steps described in
“Creating a Folder and Local Model File” on page 3-23 and “Initializing Model
Parameters with hdlsetup” on page 3-23.

To generate code:

1 Select Current Folder from the Desktop menu in the MATLAB window. This
displays the MATLAB Current Folder browser, which lets you easily access your
working folder and the files that will be generated within it.

2 At the MATLAB prompt, type the command

makehdl('sfir_fixed/symmetric_fir')

This command directs HDL Coder to generate code from the symmetric_fir
subsystem within the sfir_fixed model, using default property values.

3 As code generation proceeds, HDL Coder displays progress messages. The process
should complete with the message

HDL Code Generation Complete.

Observe that the names of generated files in the progress messages are hyperlinked.
After code generation completes, you can click these hyperlinks to view the files in
the MATLAB Editor.

makehdl compiles the model before generating code. Depending on model display
options (such as port data types, etc.), the appearance of the model may change after
code generation.

3-25

3 Tutorials

4 By default, makehdl generates VHDL code. Code files and scripts are written to a
target folder. The default target folder is a subfolder of your working folder, named
hdlsrc.

A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To
view generated code and script files, double-click the hdlsrc folder icon.

5 The files that makehdl has generated in the hdlsrc folder are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition and
RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation script
(vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify® synthesis script
• symmetric_fir_map.txt: Mapping file. This report file maps generated

entities (or modules) to the subsystems that generated them (see “Trace Code
Using the Mapping File”).

6 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

7 Before proceeding to the next section, close files you have opened in the editor. Then,
click the Go Up One Level button in the Current Folder browser, to set the current
folder back to your sl_hdlcoder_work folder.

8 Leave the sfir_fixed model open and proceed to the next section.

Generating VHDL Test Bench Code

In this section, you use the test bench generation function, makehdltb, to generate a
VHDL test bench. The test bench is designed to drive and verify the operation of the
symmetric_fir entity that was generated in the previous section. A generated test
bench includes

• Stimulus data generated by signal sources connected to the entity under test.
• Output data generated by the entity under test. During a test bench run, this data is

compared to the outputs of the VHDL model, for verification purposes.
• Clock, reset, and clock enable inputs to drive the entity under test.
• A component instantiation of the entity under test.
• Code to drive the entity under test and compare its outputs to the expected data.

3-26

 HDL Code Generation from a Simulink Model

In addition, makehdltb generates Mentor Graphics ModelSim scripts to compile and
execute the test bench.

This exercise assumes that your working folder is the same as that used in the previous
section. This folder now contains an hdlsrc folder containing the previously generated
code.

To generate a test bench:

1 At the MATLAB prompt, type the command

makehdltb('sfir_fixed/symmetric_fir')

This command generates a test bench that is designed to interface to and validate
code generated from symmetric_fir (or from a subsystem with a functionally
identical interface). By default, VHDL test bench code, as well as scripts, are
generated in the hdlsrc target folder.

2 As test bench generation proceeds, HDL Coder displays progress messages. The
process should complete with the message

HDL TestBench Generation Complete.

3 To view generated test bench and script files, double-click the hdlsrc folder icon in
the Current Folder browser. Alternatively, you can click the hyperlinked names of
generated files in the code test bench generation progress messages.

The files generated by makehdltb are:

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and output
data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads both
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize the
simulator, set up wave window signal displays, and run a simulation.

4 If you want to view the generated test bench code in the MATLAB Editor, double-
click the symmetric_fir.vhd file icon in the Current Folder browser. You may
want to study the code while referring to the makehdltb reference documentation,
which describes the default actions of the test bench generator.

3-27

3 Tutorials

5 Before proceeding to the next section, close files you have opened in the editor. Then,
click the Go Up One Level button in the Current Folder browser, to set the current
folder back to your sl_hdlcoder_work folder.

Verifying Generated Code

You can now take the previously generated code and test bench to an HDL simulator for
simulated execution and verification of results. See “Simulating and Verifying Generated
HDL Code” on page 3-39 for an example of how to use generated test bench and script
files with the Mentor Graphics ModelSim simulator.

Generating a Verilog Module and Test Bench

The procedures for generating Verilog code differ only slightly from those for generating
VHDL code. This section provides an overview of the command syntax and the generated
files.

Generating a Verilog Module

By default, makehdl generates VHDL code. To override the default and generate Verilog
code, you must pass in a property/value pair to makehdl, setting the TargetLanguage
property to 'verilog', as in this example.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The previous command generates Verilog source code, as well as scripts for the
simulation and the synthesis tools, in the default target folder, hdlsrc.

The generated files are:

• symmetric_fir.v: Verilog code. This file contains a Verilog module implementing
the symmetric_fir subsystem.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation script (vlog
command) to compile the generated Verilog code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.
• symmetric_fir_map.txt: Mapping file. This report file maps generated entities (or

modules) to the subsystems that generated them (see “Trace Code Using the Mapping
File”).

3-28

 HDL Code Generation from a Simulink Model

Generating and Executing a Verilog Test Bench

The makehdltb syntax for overriding the target language is exactly the same as that for
makehdl. The following example generates Verilog test bench code to drive the Verilog
module, symmetric_fir, in the default target folder.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The generated files are:

• symmetric_fir_tb.v: Verilog test bench code and generated test and output data.
• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim compilation script

(vlog commands). This script compiles and loads both the entity to be tested
(symmetric_fir.v) and the test bench code (symmetric_fir_tb.v).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize the
simulator, set up wave window signal displays, and run a simulation.

The following listing shows the commands and responses from a test bench session using
the generated scripts:
ModelSim> do symmetric_fir_tb_compile.do

Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

-- Compiling module symmetric_fir

Top level modules:

symmetric_fir

Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

-- Compiling module symmetric_fir_tb

Top level modules:

symmetric_fir_tb

ModelSim>do symmetric_fir_tb_sim.do

vsim work.symmetric_fir_tb

Loading work.symmetric_fir_tb

Loading work.symmetric_fir

**** Test Complete. ****

Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

Simulation Breakpoint:Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

MACRO ./symmetric_fir_tb_sim.do PAUSED at line 14

Generate HDL Code Using the Configuration Parameters Dialog Box

• “HDL Coder GUI Overview” on page 3-30
• “Creating a Folder and Local Model File” on page 3-31
• “Viewing Coder Options in the Configuration Parameters Dialog Box” on page

3-32

3-29

3 Tutorials

• “Initializing Model Parameters with hdlsetup” on page 3-33
• “Selecting and Checking a Subsystem for HDL Compatibility” on page 3-35
• “Generating VHDL Code” on page 3-35
• “Generating VHDL Test Bench Code” on page 3-37
• “Verifying Generated Code” on page 3-39
• “Generating Verilog Model and Test Bench Code” on page 3-39

HDL Coder GUI Overview

You can view and edit options and parameters that affect HDL code generation in the
Configuration Parameters dialog box, or in the Model Explorer.

The following figure shows the top-level HDL Code Generation pane in the
Configuration Parameters dialog box.

3-30

 HDL Code Generation from a Simulink Model

The following figure shows the top-level HDL Code Generation options pane in the
Model Explorer.

In the code generation exercises that follow, you use the Configuration Parameters
dialog box to view and set HDL Coder options and controls. The exercises use the
sfir_fixed model (see “The sfir_fixed Model” on page 3-16) in basic code generation
and verification steps.

Creating a Folder and Local Model File

In this section you will setup the folder and a local copy of the example model.

Creating a Folder

Start by setting up a working folder:

1 Start MATLAB.
2 Create a folder named sl_hdlcoder_work, for example:

3-31

3 Tutorials

mkdir C:\work\sl_hdlcoder_work

You will use sl_hdlcoder_work to store a local copy of the example model and to
store folders and code generated by HDL Coder. The location of the folder does not
matter, except that it should not be within the MATLAB folder tree.

3 Make the sl_hdlcoder_work folder your working folder, for example:

cd C:\work\sl_hdlcoder_work

Making a Local Copy of the Model File

Next, make a copy of the sfir_fixed model:

1 To open the model, type the following command at the MATLAB prompt:

sfir_fixed

2 Save a local copy of the sfir_fixed model to your working folder.
3 Leave the sfir_fixed model open and proceed to the next section.

Viewing Coder Options in the Configuration Parameters Dialog Box

HDL Coder option settings are displayed as a category of the model's active configuration
set. You can view and edit these options in the Configuration Parameters dialog box, or
in the Model Explorer. This discussion uses the Configuration Parameters dialog box.

To access HDL Coder settings:

1 Open the Configuration Parameters dialog box.
2 Select the HDL Code Generation pane.

3-32

 HDL Code Generation from a Simulink Model

The HDL Code Generation pane contains top-level options and buttons that
control the HDL code generation process. Several other categories of options are
available under the HDL Code entry. This exercise uses a small subset of these
options, leaving the others at their default settings.

Initializing Model Parameters with hdlsetup

Before generating code, you must set some parameters of the model. Rather than
doing this manually, use the hdlsetup command. The hdlsetup command uses the
set_param function to set up models for HDL code generation quickly and consistently.

3-33

3 Tutorials

To set the model parameters:

1 At the MATLAB command prompt, type:

hdlsetup('sfir_fixed')

2 Save the model with its new settings.

Before continuing with code generation, consider the settings that hdlsetup applies to
the model.

hdlsetup configures Solver options that are recommended or required by HDL Coder.
These options are:

• Type: Fixed-step. (HDL Coder currently supports variable-step solvers under
limited conditions. See hdlsetup.)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be
selected, but this option is usually the best one for simulating discrete systems.

• Tasking mode: SingleTasking. HDL Coder does not currently support models that
execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as follows:

• Start Time: 0.0 s
• Stop Time: 10 s
• Fixed step size (fundamental periodic sample time): auto

If Fixed step size is set to auto the step size is chosen automatically, based on the
sample times specified in the model. In the example model, only the Signal From
Workspace block specifies an explicit sample time (1 s); the other blocks inherit this
sample time.

The model start and stop times determine the total simulation time. This in turn
determines the size of data arrays that are generated to provide stimulus and output
data for generated test benches. For the example model, computation of 10 seconds of
test data does not take a significant amount of time. Computation of sample values for
more complex models can be time consuming. In such cases, you may want to decrease
the total simulation time.

3-34

 HDL Code Generation from a Simulink Model

The remaining parameters set by hdlsetup control error severity levels, data logging,
and model display options. If you want to view the complete set of model parameters
affected by hdlsetup, open hdlsetup.m in the MATLAB Editor.

The model parameter settings provided by hdlsetup are intended as useful defaults,
but they may not be optimal for your application. For example, hdlsetup sets a default
Simulation stop time of 10 s. A total simulation time of 1000 s would be more realistic
for a test of the sfir_fixed example model. If you would like to change the simulation
time, enter the desired value into the Simulation stop time field of the Simulink
Editor.

See the “Model Parameters” table in the “Model and Block Parameters” section of the
Simulink documentation for a summary of model parameters.

Selecting and Checking a Subsystem for HDL Compatibility

HDL Coder generates code from either the current model or from a subsystem at the root
level of the current model. You use the Generate HDL for menu to select the model or
subsystem from which code is to be generated. Each entry in the menu shows the full
path to the model or one of its subcomponents.

The sfir_fixed model is configured with the sfir_fixed/symmetric_fir subsystem
selected for code generation. If this is not the case, make sure that the symmetric_fir
subsystem is selected for code generation, as follows:

1 Select sfir_fixed/symmetric_fir from the Generate HDL for menu.
2 Click Apply.

To check HDL compatibility for the subsystem:

1 Click the Run Compatibility Checker button.
2 The HDL compatibility checker examines the system selected in the Generate HDL

for menu for compatibility problems. In this case, the selected subsystem is fully
HDL-compatible, and the compatibility checker displays the following message:

Starting HDL Check.

HDL Check Complete with 0 errors, warnings and messages.

The compatibility checker also displays a report in a new window.

Generating VHDL Code

The top-level HDL Code Generation options are now set as follows:

3-35

3 Tutorials

• The Generate HDL for field specifies the sfir_fixed/symmetric_fir subsystem
for code generation.

• The Language field specifies (by default) generation of VHDL code.
• The Folder field specifies a target folder that stores generated code files and scripts.

The default target folder is a subfolder of your working folder, named hdlsrc.

Before generating code, select Current Folder from the Desktop menu in the MATLAB
window. This displays the Current Folder browser, which lets you access your working
folder and the files that will be generated within it.

To generate code:

3-36

 HDL Code Generation from a Simulink Model

1 Click the Generate button.
2 As code generation proceeds, HDL Coder displays progress messages. The process

should complete with the message

HDL Code Generation Complete.

Observe that the names of generated files in the progress messages are hyperlinked.
After code generation completes, you can click these hyperlinks to view the files in
the MATLAB Editor.

HDL Coder compiles the model before generating code. Depending on model display
options (such as port data types, etc.), the appearance of the model may change after
code generation.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To
view generated code and script files, double-click the hdlsrc folder icon.

4 The files that were generated in the hdlsrc folder are:

• symmetric_fir.vhd: VHDL code. This file contains an entity definition and
RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation script
(vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.
• symmetric_fir_map.txt: Mapping file. This report file maps generated

entities (or modules) to the subsystems that generated them (see “Trace Code
Using the Mapping File”).

5 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

6 Before proceeding to the next section, close files you have opened in the editor. Then,
click the Go Up One Level button in the Current Folder browser, to set the current
folder back to your sl_hdlcoder_work folder.

Generating VHDL Test Bench Code

At this point, the Generate HDL for, Language, and Folder fields are set as they
were in the previous section. Accordingly, you can now generate VHDL test bench code
to drive the VHDL code generated previously for the sfir_fixed/symmetric_fir
subsystem. The code will be written to the same target folder as before.

To generate a VHDL test bench:

3-37

3 Tutorials

1 Select the HDL Code Generation > Test Bench pane.

2 Select HDL test bench.
3 Click the Generate Test Bench button.
4 As test bench generation proceeds, HDL Coder displays progress messages. The

process should complete with the message

HDL TestBench Generation Complete.

5 The generated files in the hdlsrc folder are:

• symmetric_fir_tb.vhd: VHDL test bench code, with generated test and output
data.

3-38

 HDL Code Generation from a Simulink Model

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim compilation
script (vcom commands). This script compiles and loads the entity to be tested
(symmetric_fir.vhd) and the test bench code (symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize the
simulator, set up wave window signal displays, and run a simulation.

Verifying Generated Code

You can now take the generated code and test bench to an HDL simulator for simulated
execution and verification of results. See “Simulating and Verifying Generated HDL
Code” on page 3-39 for an example of how to use generated test bench and script files
with the Mentor Graphics ModelSim simulator.

Generating Verilog Model and Test Bench Code

The procedure for generating Verilog code is the same as for generating VHDL code (see
“Generating a VHDL Entity from a Subsystem” on page 3-25 and “Generating VHDL
Test Bench Code” on page 3-26), except that you select Verilog from the Language
field of the HDL Code Generation options.

Simulating and Verifying Generated HDL Code

Note: This section requires the use of the Mentor Graphics ModelSim simulator.

This section assumes that you have generated code from the sfir_fixed model as
described in either of the following exercises:

• “Generate HDL Code Using the Command Line” on page 3-22
• “Generate HDL Code Using the Configuration Parameters Dialog Box” on page

3-29

In this section you compile and run a simulation of the previous generated model and
test bench code. The scripts generated by HDL Coder let you do this with just a few
simple commands. The procedure is the same, whether you generated code in the
command line environment or in the GUI.

To run the simulation:

1 Start the Mentor Graphics ModelSim software.

3-39

3 Tutorials

2 Set the working folder to the folder in which you previously generated code.

ModelSim>cd C:/work/sl_hdlcoder_work/hdlsrc

3 Use the generated compilation script to compile and load the generated model and
text bench code. The following listing shows the command and responses.
ModelSim>do symmetric_fir_tb_compile.do

Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_std

-- Compiling entity symmetric_fir

-- Compiling architecture rtl of symmetric_fir

Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_std

-- Compiling package symmetric_fir_tb_pkg

-- Compiling package body symmetric_fir_tb_pkg

-- Loading package symmetric_fir_tb_pkg

-- Loading package symmetric_fir_tb_pkg

-- Compiling entity symmetric_fir_tb

-- Compiling architecture rtl of symmetric_fir_tb

-- Loading entity symmetric_fir

4 Use the generated simulation script to execute the simulation. The following listing
shows the command and responses. The warning messages are benign.
ModelSim>do symmetric_fir_tb_sim.do

vsim work.symmetric_fir_tb

Loading C:\Applications\ModelTech_6_0\win32/../std.standard

Loading C:\Applications\ModelTech_6_0\win32/../ieee.std_logic_1164(body)

Loading C:\Applications\ModelTech_6_0\win32/../ieee.numeric_std(body)

Loading work.symmetric_fir_tb_pkg(body)

Loading work.symmetric_fir_tb(rtl)

Loading work.symmetric_fir(rtl)

** Warning: NUMERIC_STD."<": metavalue detected, returning FALSE

Time: 0 ns Iteration: 0 Instance: /symmetric_fir_tb

.

.

.

** Warning: NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

Time: 0 ns Iteration: 1 Instance: /symmetric_fir_tb

** Note: **************TEST COMPLETED **************

Time: 140 ns Iteration: 1 Instance: /symmetric_fir_tb

The test bench termination message indicates that the simulation has run to
completion without comparison errors.

** Note: **************TEST COMPLETED **************

5 The simulation script displays inputs and outputs in the model (including the
reference signals y_out_ref and delayed_x_out_ref) in the Mentor Graphics
ModelSim wave window. The following figure shows the signals displayed in the
wave window.

3-40

 HDL Code Generation from a Simulink Model

6 Exit the Mentor Graphics ModelSim simulator when you finish viewing signals.
7 Close files you have opened in the MATLAB Editor. Then, click the Go Up One

Level button in the Current Folder browser, to set the current folder back to your
work folder.

3-41

